Infinite baffle speaker

Since I started being interested in audio, I’ve seen all kinds of speaker designs, weird arrangements and weird geometries. From all those speakers, in terms of extremely low frequency reproduction the best ones where the infinite baffle subwoofers. Those setups go easily down to frequencies like 10Hz. You may say these figures are useless with a musical program and normally i would agree but if we are in a quest for perfection i would say it’s mandatory. Even if our music doesn’t have much information below 27Hz (lowest note on a grand piano, though pipe organs go even lower) it is important to have the roll off region in frequency response at least an octave lower.

The reason for this is that the speaker and the cabinet box form a high pass filter and like with all filters it will add lots of delay in the slope region which may affect the quality of the reproduction. For Home Theater applications response down to teen frequencies becomes a necessity. If you look at the spectrogram of a .50 Barret rifle shooting sound you will see the most information is in the 10 to 20 Hz area. You may not hear the 10Hz but you will certainly feel it, much like if you would be standing next to the rifle.

The principle of IB (Infinite Baffle) is to install the woofers on a panel that is wide enough so that the waves coming from the back of the woofer never meet the waves coming from the front of the woofer. Looking at the wavelength of a 10Hz sine you will see you need a very big panel. However IB can also be done if you put the woofer in a box big enough so that it has zero damping. Custom HT rooms have the woofers mounted on a sealing or floor and have the attic or basement act as that big cabinet box.

In this project I’m presenting the author build a speaker on a panel to fit a door way and have an entire room to isolate the back waves from the woofers. He is referring to the Hoffman’s Iron Law that says: having efficiency, low frequency response and box volume one must sacrifice one of the three to have the other two. IB of course sacrifices box volume. There are some who argue this Law, because it actually holds true if you place the subwoofer in an open environment. Closed spaces have gain that will  your low frequencies even if your speaker loses efficiency, and here by speaker i mean the woofer plus cabinet. Woofer’s efficiency is constant.

Another thing is nowadays Hoffman’s Iron Law can easily be defeated with powerful woofers and equalizers. There are woofers that can take tons of power and have huge excursion and can go really low in small enough boxes. Returning to the IB setups you will also need high excursion woofers and high pass filter on your amplifier with a corner frequency between 5 and 10Hz, sometimes higher depending on the woofer your using. You will need high excursion because the woofer won’t be damped at all so it will be free to move. At high powers and low frequencies it will move allot.

In this project the author didn’t built a subwoofer but a full-range infinite baffle speaker. I don’t see the point of this expect for a center channel. He used 8 x 12″ woofers for the low frequency part. If the woofers aren’t such quality it’s better to use many of them, this way the stress will be divided between them. When i first saw the baffle i thought it is too thin to hold the eight woofers. But then i saw the bracing on the back, and that will make it more rigid for sure.

The tweeters are piezo which in my opinion are not that great. Also the crossover i think could use more work. I always liked higher orders crossovers because they give you allot more dynamic range. The whole system reaches 96dB/W/m, which is very nice. Is a nice and fun build, and even if it won’t live up to your expectations at least you will have a sonic weapon.

Infinite Baffle Loudspeaker: [Link][Via]